

Opportunities for Spatial Database Research in the Context of Preference Queries

[Keynote Speech]

Kyriakos Mouratidis

Singapore Management University

LocalRec 2023

Introduction

- Paradigms to identify options of preference in a multiobjective setting:
 - Dominance-based: Skyline (and k-skyband)
 - Ranking by utility: Top-k query (input: preference vector w of d weights; utility of an option defined as the weighted sum of its attributes)

Preference vector $\mathbf{w} = (0.2, 0.8)$

Utility of option $\mathbf{r} = (x_1, x_2)$ defined as:

 $U(\mathbf{r}) = 0.2 \cdot x_1 + 0.8 \cdot x_2$

Top-k: the *k* options with highest utility

- Skyline: all opts. that aren't dominated
- Includes top-1 \forall w
- k-skyband: all opts.
 not dominated by
 k or more others
- Includes top- $\mathbf{k} \forall \mathbf{w}$

Traditional top-k query

- <u>Top-k query</u>: shortlists top options from a set of alternatives
- E.g. TripAdvisor.com
 - rate (and browse) hotels according to price, cleanliness, location, service, etc.
- A user's criteria: price, cleanliness and service, with different weights

Weights could be captured by slide-bars:

Top-k as sweeping the data space

- Assume all weights are positive
- ...and each option attribute is in range [0,1]
- Example for d = 2 (showing: <u>option space</u>)
- Sweeping line normal to vector w
- Sweeps from top-corner (1,1) towards origin
- Order an option is met
 ↔ order in ranking!
 - E.g. top-2 = { $\mathbf{r_1}, \mathbf{r_2}$ }
- At current position:
 ∀ option above (below) the line, higher (lower) score than r₂

Relationship to Convex Hull

- Convex Hull: The smallest convex polytope that includes a set of points (options)
- Fact: The top-1 option for any query vector is
 A on the hull!
 - [Dantzig63]: LP text

Utility order and equivalent half-space

• $U(\mathbf{r_1}) = U(\mathbf{r_2}) \leftrightarrow$

a hyper-plane in pref. domain \uparrow_{W_2}

• $U(\mathbf{r}_1) > U(\mathbf{r}_2) \leftrightarrow$ a half-space in pref. domain $U(\mathbf{r}_1) < U(\mathbf{r}_2)$ 1-2 $U(r_1) > U(r_2)$

Top-k in High-D?

- Unless the data are very sparse or overly correlated, top-k is meaningless in more than 5-6 dimensions!
- As d grows, the **highest score** across the dataset approaches the **lowest score**!
- I.e. ranking by score no longer offers distinguishability ↔ looses its usefulness
- Behaviour very similar to nearest neighbor query, known to suffer from the dimensionality curse

Top-k in High-D?

- IND data
- ... of fixed cardinality n = 100K
 - ...we vary data dimensionality

mIR problem

- Tang, Mouratidis, Han: "On m-Impact Regions and Standing Top-k Influence Problems". SIGMOD'21
- <u>m-Impact Regions Problem (mIR)</u>: Given an option set *D*, a user set *W*, and a positive integer *m*, the *mIR* problem is to compute the maximal region *R* in option space, inside which any (existing or hypothetical) option *r* is in the top-k set of at least *m* users

mIR example

- Option set: hotels
- Attributes (dimensions): Value, Service
- User set includes 4 users

(a) Option set and User set

(b) *m*IR result (shown shaded)

Algorithmic basis for *m*IR

- Let c_i be the top-k-th score for user w_i in D
- r is in top-k set of $\mathbf{w}_i \Leftrightarrow U_{wi}(\mathbf{r}) \ge \mathbf{C}_i$
- ...which is a half-space in the pref. space, called the *impact half-space* of w_i
- Basic idea:
 - produce the impact half-space for each user
 - partition the pref. space by these half-spaces
 - report the partitions (*cells*) included in ≥ *m* impact half-spaces
 - complexity..... $O(|W|^d)$

Algorithmic basis for *m*IR

- Insert half-spaces one by one into a cell tree
- Early reporting and pruning possible
- Still too slow

Early reporting

Early elimination

(b) Binary tree representation

Snapshots of our methodology

Case study

- TripAdvisor data (137,563 users and 1,850 hotels)
- $d = 2, k = 10, m = 0.5 \cdot |U|$

Marrying top-k with skyline

- Mouratidis, Li, Tang: "Marrying Top-k with Skyline Queries: Relaxing the Preference Input while Producing Output of Controllable Size". SIGMOD'21
- Skyline: not personalized, no output-size control
- Top-k: whether mined or user-input, w is only an estimate ⇒ too rigid ranking
- Strong requirements:
 - Personalized
 - Output-size specified (**OSS**)
 - Flexible preference specification

Previous operators

Operator	Personalized	OSS	Flexible Input
Skyline/ <i>k</i> -Skyband	×	×	 ✓
Top-k	 ✓ 	~	×
OSS skylines	×	~	~
Regret-minimizing sets	×	~	~
Fixed-region techniques	 ✓ 	×	~
Proposed (ORD and ORU)	 ✓ 	~	~

Fixed-region (appr. 1): r-skyband

- Consider opts. r_1 , r_2 and a region *R* in pref. domain
- \forall w in R, U(r₁) > U(r₂) : r₁ r-dominates r₂
- r-skyband: options r-dominated by <k others

Fixed-region (appr. 2): Uncertain top-k

- Given: region *R* in pref. space
- UTK: report all possible top-k opts. when $\mathbf{w} \in R$

Hotel	Svc.	Cln.	Loc.
$p_1^{}$	8.3	9.1	7.2
p_2	2.4	9.6	8.6
p_3	5.4	1.6	4.1
p_4	2.6	6.9	9.4
p_5	7.3	3.1	2.4
p_6	7.9	6.4	6.6
p_7	8.6	7.1	4.3

Dataset

UTK output for *k* = 2 (in preference space)

Problem definition: ORD & ORU

- Input: vector (seed) **w**, value *k*, desired output size *m*
- p-dominance: a record p-dominates another if it has higher utility ∀ pref. vector within radius p from w
- ORD: report the options that are ρ-dominated by fewer than k others, <u>for the minimum ρ that produces</u>
 <u>m records in the output</u>
- Stopping radius
 p unknown to the algo. in advance
- The user and application are both transparent to ρ
- ORU: report the options that are in top-k result for at least one pref. vector within distance p from w, <u>for the</u> <u>minimum p that produces m records in the output</u>

Snapshots of our methodology

Case study

• NBA 2018-19 statistics (*k* = 2, *m* = 6)

ORD/ORU report distinct results from past approaches (and from each other)

ORD/ORU report records that are particularly strong for alternative, very similar preferences to the seed **w**

Quantifying Dataset Competitiveness

- Mouratidis, Li, Tang: "Quantifying the Competitiveness of a Dataset in Relation to General Preferences". VLDBJ, to appear
- Change of focus... to the dataset itself
- Objective: assess its competitiveness w.r.t. different possible preferences
- We define measures of competitiveness, and represent them in the form of a heat-map in the pref. space

Case study (TA)

- TripAdvisor 1,850 hotels
- *d* = 3 (loc/n, room, value)
- Pref. space: simplex
- Partition into cells
- Focus on the fringe of D:
 - Use r-skyband
- Utility-based measure
 - MaxMin_k
 - for-granted utility that any of the possible top-k hotels would have for any preference in the cell

Applications

- Market Analysis: hottest cells is where the market's strength lies
 - i.e., the hotel market caters best for users who prioritize value over room quality and location.
- Business Development: hottest cells indicate market saturation
 - e.g., coldest cells may indicate sweet spots for a new hotel
- Identifying outstanding options in the market
- MaxMin_k can speed up top-k computation
- First two applications benefit when the distribution (or a sample) of user preferences is known

Competitiveness measures

- **Type I** (utility-based): how satisfied the different user types with the products available in *D*
- Type II (competition-based): how steep the competition among alternative products

Snapshots of our methodology

Lemma 2 In general dimensionality d, there are $\binom{2^{h}-1+d}{d} - \binom{2^{h}}{d}$ nodes at depth h of the simplex pyramid.

Conclusion

- We have overviewed the topic of multicriteria/preference querying and its many relationships to spatial indexing/querying
- We looked deeper into 3 specific examples (problem definitions)
- Overall, we saw that a skillset typical to SIGSPATIAL attendees may apply to an exciting, non-spatial domain

Thank you!