
Opportunities for Spatial Database 

Research in the Context of 

Preference Queries

[Keynote Speech]

LocalRec 2023

Singapore Management University

Kyriakos Mouratidis



Introduction

• Paradigms to identify options of preference in a multi-
objective setting:
– Dominance-based: Skyline (and k-skyband) 

– Ranking by utility: Top-k query (input: preference vector w of d
weights; utility of an option defined as the weighted sum of its 
attributes)
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Preference vector w = (0.2, 0.8)

Utility of option r = (x1, x2) defined as:

U(r) = 0.2  x1 + 0.8  x2

Top-k: the k options with highest utility
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Skyline and Skyband

• Skyline: all opts. that 

aren’t dominated

• Includes top-1  w

• k-skyband: all opts. 

not dominated by 

k or more others

• Includes top-k  w



Traditional top-k query

• Top-k query: shortlists 
top options from a set 
of alternatives

• E.g. TripAdvisor.com
– rate (and browse) hotels 

according to price, 
cleanliness, location, 
service, etc. 

• A user’s criteria: price, 
cleanliness and 
service, with different 
weights

Price Clean Service

Weights could be captured 

by slide-bars:



Top-k as sweeping the data space

• Assume all weights are positive

• …and each option attribute is in range [0,1]

• Example for d = 2 (showing: option space)

• Sweeping line normal 
to vector w

• Sweeps from top-corner
(1,1) towards origin

• Order an option is met 
 order in ranking! 
– E.g. top-2 = { r1, r2 }

• At current position:
 option above (below) the 
line, higher (lower) score than r2
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Relationship to Convex Hull

• Convex Hull: The smallest convex polytope 

that includes a set of points (options)

• Fact: The top-1 option for 

any query vector is 

on the hull! 

– [Dantzig63]: LP text



Utility order and equivalent half-space

• U(r1) = U(r2) 

a hyper-plane in pref. domain

• U(r1) > U(r2) 

a half-space in pref. domain
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Top-k in High-D?

• Unless the data are very sparse or overly 

correlated, top-k is meaningless in more than 5-

6 dimensions!

• As d grows, the highest score across the 

dataset approaches the lowest score!

• I.e. ranking by score no longer offers 

distinguishability  looses its usefulness

• Behaviour very similar to nearest neighbor 

query, known to suffer from the dimensionality 

curse
8



Top-k in High-D?

• IND data

• …of fixed cardinality n = 100K 

• …we vary data dimensionality
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mIR problem

• Tang, Mouratidis, Han: “On m-Impact Regions 

and Standing Top-k Influence Problems”.

SIGMOD’21

• m-Impact Regions Problem (mIR): Given an 

option set D, a user set W, and a positive 

integer m, the mIR problem is to compute the 

maximal region R in option space, inside which 

any (existing or hypothetical) option r is in the 

top-k set of at least m users
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mIR example

Option set: hotels

Attributes (dimensions): Value, Service

User set includes 4 users 
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m = 3 

→

Option space

(a) Option set and User set



Algorithmic basis for mIR

• Let  ci be the top-k-th score for user wi in D

• r is in top-k set of wi  Uwi(r) ≥ ci

• …which is a half-space in the pref. space, 

called the impact half-space of wi

• Basic idea: 

– produce the impact half-space for each user

– partition the pref. space by these half-spaces

– report the partitions (cells) included in ≥ m impact 

half-spaces

– complexity……… O(|W|d)
12



Algorithmic basis for mIR

• Insert half-spaces one by one into a cell tree

• Early reporting and pruning possible

• Still too slow
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Early reporting

Early elimination



Snapshots of our methodology
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Early 

reporting

Early 

elimination



Case study

• TripAdvisor data (137,563 users and 1,850 hotels)

• d = 2, k = 10, m = 0.5 |U|

15



Marrying top-k with skyline

• Mouratidis, Li, Tang: “Marrying Top-k with Skyline 

Queries: Relaxing the Preference Input while 

Producing Output of Controllable Size”. SIGMOD’21

• Skyline: not personalized, no output-size control

• Top-k: whether mined or user-input, w is only an 

estimate  too rigid ranking

• Strong requirements:

• Personalized

• Output-size specified – (OSS)

• Flexible preference specification
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Previous operators
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Fixed-region (appr. 1): r-skyband

18

• Consider opts. r1, r2 and a region R in pref. domain

• w in R, U(r1) > U(r2) : r1 r-dominates r2

• r-skyband: options r-dominated by <k others
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Fixed-region (appr. 2): Uncertain top-k

• Given: region R in pref. space

• UTK: report all possible top-k opts. when w  R
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Problem definition: ORD & ORU

• Input: vector (seed) w, value k, desired output size m

• ρ-dominance: a record ρ-dominates another if it has 

higher utility   pref. vector within radius ρ from w

• ORD: report the options that are ρ-dominated by 

fewer than k others, for the minimum ρ that produces 

m records in the output 

• Stopping radius ρ unknown to the algo. in advance 

• The user and application are both transparent to ρ

• ORU: report the options that are in top-k result for at 

least one pref. vector within distance ρ from w, for the 

minimum ρ that produces m records in the output 
20



Snapshots of our methodology
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Case study

• NBA 2018-19 statistics (k = 2, m = 6)
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w = (0.49, 0.51)

ORD/ORU report distinct 

results from past 

approaches (and from 

each other)

ORD/ORU report records 

that are particularly strong 

for alternative, very similar 

preferences to the seed w



Quantifying Dataset Competitiveness

• Mouratidis, Li, Tang: “Quantifying the 

Competitiveness of a Dataset in Relation to General 

Preferences”. VLDBJ, to appear

• Change of focus… to the dataset itself

• Objective: assess its competitiveness w.r.t. different 

possible preferences 

• We define measures of competitiveness, and 

represent them in the form of a heat-map in the pref. 

space
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Case study (TA)

• TripAdvisor 1,850 hotels

• d = 3 (loc/n, room, value)

• Pref. space: simplex

• Partition into cells

• Focus on the fringe of D:

– Use r-skyband

• Utility-based measure

– MaxMink

– for-granted utility that any 

of the possible top-k 

hotels would have for any 

preference in the cell
24Utility-based heat-map



Applications 

• Market Analysis: hottest cells is where the market’s 

strength lies

– i.e., the hotel market caters best for users who 

prioritize value over room quality and location.

• Business Development: hottest cells indicate 

market saturation 

– e.g., coldest cells may indicate sweet spots for a new hotel

• Identifying outstanding options in the market

• MaxMink can speed up top-k computation

• First two applications benefit when the distribution (or 

a sample) of user preferences is known
25



Competitiveness measures

• Type I (utility-based): how satisfied the different user 

types with the products available in D

• Type II (competition-based): how steep the 

competition among alternative products
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Snapshots of our methodology 
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Conclusion 

• We have overviewed the topic of 

multicriteria/preference querying and its many 

relationships to spatial indexing/querying

• We looked deeper into 3 specific examples (problem 

definitions)

• Overall, we saw that a skillset typical to SIGSPATIAL 

attendees may apply to an exciting, non-spatial 

domain
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Thank you! 
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