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Background: Synthetic Social Networks

◎ Representations of people connect to one another
◎ Real world data difficult to find
◎ Three classical models: Erdős-Rényi, Barabási-Albert, 

Watts-Strogatz 
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Background: Spatial Social Network Models 

◎ Real-world social networks exhibit spatial homophily
◎ Incorporate spatial distances between nodes
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Ground Truth Erdős-Rényi Barabási-Albert



Goal

Generate social networks that exhibit spatial 
autocorrelation
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Classical Erdős-Rényi Model

◎ Nodes connected randomly
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Classical Barabási-Albert Model

◎ Scale free network growth
◎ Preferential attachment
◎ Nodes are added iteratively
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Classical Watt-Strogatz Model

◎ Nodes connect to k nearest neighbors, and then have 
chance to rewire

◎ Exhibits small-world properties
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Existing Work

◎ Generating and Analyzing Spatial Social Networks[1]
○ Assumes that nodes are in a uniform lattice
○ When real-world location data is incorporated, 

large variety of distances leads to sparse graphs or 
long runtimes
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[1] M. Alizadeh, C. Cioffi-Revilla, and A. Crooks. Generating and analyzing spatial social 
networks. Computational and Mathematical Organization Theory, 23:362–390, 2017.



Spatial Erdős-Rényi Model

◎ 𝑝 (𝑑) = 𝐶𝑑 −𝛼 
○ 𝑑: distance between nodes
○ 𝐶: normalizing coefficient
○ 𝛼: distance-decay exponent
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Spatial Barabási-Albert Model

◎ Starts with clique of 𝑚 nodes
◎ 𝑝 (𝑑) = 𝑘𝑑 −𝛼 

○ 𝑘: degree of node being considered for connection
◎ Long runtime
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Spatial Watts-Strogatz Model

◎ Two versions: initially connect based on distance, and 
rewire based on distance

◎ Due to node IDs, random
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Geosocial Erdős-Rényi Model

◎ Implemented scaling factor
○ 𝑝 (𝑑) = min(1, 𝑠𝑑 −𝛼)
○ 𝛼 = 3, average degree 20
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Geosocial Barabási-Albert Model

◎ Node processing order
◎ Normalize weights from power law
◎ 103.1283 seconds vs 49.5471 seconds
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Geosocial Watts-Strogatz Model

◎ Nearest neighbors defined as nodes that are closest 
spatially
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Datasets

◎ Virginia ZIP code data
○ From Facebook
○ Each ZIP code given Social Connectedness Index

◎ Fairfax County Census Tracts
○ Mobility data
○ Highest estimated population flows for 1/4/2020

◎ Average degree 20, 14, 𝛼 = 3
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Ground Truth Graphs

Virginia ZIP code Fairfax Census Tracts
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Qualitative Evaluation (Virginia)
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Qualitative Evaluation (Virginia)
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Ground Truth Geosocial Erdős-Rényi



Qualitative Evaluation (Fairfax County)
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Virginia ZIP Code Statistics
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Fairfax Census Tract Statistics
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Conclusions and Future Work

◎ Geosocial Erdős-Rényi performs well when compared 
to other geosocial and spatial graphs

◎ Topographical distances instead of Euclidean 
distances
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