Synthetic Geosocial Network Generation

Ketevan Gallagher, Taylor Anderson, Andrew Crooks, Andreas Züfle

Background: Synthetic Social Networks

- Representations of people connect to one another
- Real world data difficult to find
- O Three classical models: Erdős-Rényi, Barabási-Albert, Watts-Strogatz

Background: Spatial Social Network Models

- © Real-world social networks exhibit spatial homophily
- Incorporate spatial distances between nodes

3

Generate social networks that exhibit spatial autocorrelation

Classical Erdős-Rényi Model

O Nodes connected randomly

Classical Barabási-Albert Model

- ◎ Scale free network growth
- O Preferential attachment
- O Nodes are added iteratively

Classical Watt-Strogatz Model

- O Nodes connect to k nearest neighbors, and then have chance to rewire
- © Exhibits small-world properties

Existing Work

Generating and Analyzing Spatial Social Networks[1]

- Assumes that nodes are in a uniform lattice
- When real-world location data is incorporated, large variety of distances leads to sparse graphs or long runtimes

[1] M. Alizadeh, C. Cioffi-Revilla, networks. Computational and M

[1] M. Alizadeh, C. Cioffi-Revilla, and A. Crooks. Generating and analyzing spatial social networks. Computational and Mathematical Organization Theory, 23:362–390, 2017.

Spatial Erdős-Rényi Model

 $\bigcirc p(d) = Cd^{-\alpha}$

- *d*: distance between nodes
- C: normalizing coefficient
- α : distance-decay exponent

Spatial Barabási-Albert Model

- Starts with clique of *m* nodes
- $\bigcirc p(d) = kd^{-\alpha}$
 - *k*: degree of node being considered for connection
- O Long runtime

Spatial Watts-Strogatz Model

- O Two versions: initially connect based on distance, and rewire based on distance
- O Due to node IDs, random

Geosocial Erdős-Rényi Model

Implemented scaling factor $p(d) = \min(1, sd^{-\alpha})$ $\alpha = 3$, average degree 20

Geosocial Barabási-Albert Model

- O Node processing order
- O Normalize weights from power law
- 103.1283 seconds vs 49.5471 seconds

Geosocial Watts-Strogatz Model

O Nearest neighbors defined as nodes that are closest spatially

14

- O Virginia ZIP code data
 - From Facebook
 - Each ZIP code given Social Connectedness Index
- Sairfax County Census Tracts
 - Mobility data
 - Highest estimated population flows for 1/4/2020

 \bigcirc Average degree 20, 14, α = 3

15

Virginia ZIP code

Fairfax Census Tracts

Qualitative Evaluation (Virginia)

Qualitative Evaluation (Virginia)

Ground Truth

Geosocial Erdős-Rényi

Qualitative Evaluation (Fairfax County)

Virginia ZIP Code Statistics

	Ground	Classic	Classic	Classic	Spatial	Spatial	Geosocial	Geosocial	Geosocial	KNN
	Truth	ER	BA	WS	ER	WS	ER	BA	WS	
Avg. Degree	19.59	19.78	19.84	19.77	2.94	20.00	20.05	19.73	20.00	20.00
Std. Dev. Degree	3.40	3.83	18.49	2.70	4.29	1.37	14.70	5.06	4.36	4.50
Max. Degree	32.00	32.60	163.25	29.40	22.55	25.00	69.40	37.50	33.90	34.00
Radius of Gyration	55292	513022	489469	509785	12539	510990	87529	133198	68856	37152
Std. Dev Radius of Gyration	51072	132646	134790	132887	23579	130288	67073	107183	64809	15330
Avg. Length of Edge	20934	206714	208432	201354	7739	188125	18440	29880	18792	16087
Std. Dev. Length of Edge	21175	166824	161757	168058	14522	167691	25926	45530	22785	12822
# Triangles	26357	1251	6742	4717	1258	22709	38421	13283	23522	27596
Jaccard Index	1	0.0078	0.0118	0.0136	0.1167	0.0266	0.3615	0.1660	0.2367	0.2560

Fairfax Census Tract Statistics

	Ground	Classic	Classic	Classic	Spatial	Spatial	Geosocial	Geosocial	Geosocial	KNN
	Truth	ER	BA	WS	ER	WS	ER	BA	WS	
Avg. Degree	13.58	13.62	13.77	13.69	12.48	14.00	13.99	13.63	14.00	14.00
Std. Dev. Degree	8.69	3.12	11.52	2.24	4.68	1.35	4.96	4.07	3.11	3.16
Max. Degree	72.00	22.95	82.75	20.65	24.45	18.35	26.95	26.30	22.70	22.00
Radius of Gyration	11836	29287	29047	26435	9049	28719	9675	12637	7434	4401
Std. Dev Radius of Gyration	6935	6843	8267	7847	5597	7770	5505	8532	4814	970
Avg. Length of Edge	4109	13852	14036	9506	2731	12338	2842	3594	2462	2068
Std. Dev. Length of Edge	3968	9930	10414	9008	3018	9951	3049	4587	2345	1333
# Triangles	3074	401	1606	900	2491	3251	3176	2075	3687	4597
Jaccard Index	1	0.0163	0.0317	0.0643	0.2814	0.0295	0.2861	0.1179	0.1880	0.2038

Conclusions and Future Work

- Geosocial Erdős-Rényi performs well when compared to other geosocial and spatial graphs
- O Topographical distances instead of Euclidean distances

Acknowledgements

This work is supported by National Science Foundation Grant #2109647 titled "Data-Driven Modeling to Improve Understanding of Human Behavior, Mobility, and Disease Spread" and by the Aspiring Scientists Summer Internship Program (ASSIP) at George Mason University.

Thank you to Dr. Andrew Crooks, Dr. Taylor Anderson, and Dr. Andreas Züfle